Permeation and block of the Kv1.2 channel examined using brownian and molecular dynamics.
نویسندگان
چکیده
Using both Brownian and molecular dynamics, we replicate many of the salient features of Kv1.2, including the current-voltage-concentration profiles and the binding affinity and binding mechanisms of charybdotoxin, a scorpion venom. We also elucidate how structural differences in the inner vestibule can give rise to significant differences in its permeation characteristics. Current-voltage-concentration profiles are constructed using Brownian dynamics simulations, based on the crystal structure 2A79. The results are compatible with experimental data, showing similar conductance, rectification, and saturation with current. Unlike KcsA, for example, the inner pore of Kv1.2 is mainly hydrophobic and neutral, and to explore the consequences of this, we investigate the effect of mutating neutral proline residues at the mouth of the inner vestibule to charged aspartate residues. We find an increased conductance, less inward rectification, and quicker saturation of the current-voltage profile. Our simulations use modifications to our Brownian dynamics program that extend the range of channels that can be usefully modeled. Using molecular dynamics, we investigate the binding of the charybdotoxin scorpion venom to the outer vestibule of the channel. A potential of mean force is derived using umbrella sampling, giving a dissociation constant within a factor of ∼2 to experimentally derived constants. The residues involved in the toxin binding are in agreement with experimental mutagenesis studies. We thus show that the experimental observations on the voltage-gated channel, including the toxin-channel interaction, can reliably be replicated by using the two widely used computational tools.
منابع مشابه
Dynamics of K+ ion conduction through Kv1.2.
The crystallographic structure of a potassium channel, Kv1.2, in an open state makes it feasible to simulate entire K(+) ion permeation events driven by a voltage bias and, thereby, elucidate the mechanism underlying ion conduction and selectivity of this type of channel. This Letter demonstrates that molecular dynamics simulations can provide movies of the overall conduction of K(+) ions throu...
متن کاملStructural Basis of the Selective Block of Kv1.2 by Maurotoxin from Computer Simulations
The 34-residue polypeptide maurotoxin (MTx) isolated from scorpion venoms selectively inhibits the current of the voltage-gated potassium channel Kv1.2 by occluding the ion conduction pathway. Here using molecular dynamics simulation as a docking method, the binding modes of MTx to three closely related channels (Kv1.1, Kv1.2 and Kv1.3) are examined. We show that MTx forms more favorable electr...
متن کاملRapid report A model of calcium channels
We propose a model of calcium channels that can explain most of their observed properties, including the anomalous mole fraction effect and mutation of the glutamate residues. The structure grossly resembles that of the KcsA potassium channel except for the presence of an extracellular vestibule and a shorter selectivity filter containing four glutamate residues. Using this model in electrostat...
متن کاملConducting-state properties of the KcsA potassium channel from molecular and Brownian dynamics simulations.
The mechanisms underlying transport of ions across the potassium channel are examined using electrostatic calculations and three-dimensional Brownian dynamics simulations. We first build open-state configurations of the channel with molecular dynamics simulations, by pulling the transmembrane helices outward until the channel attains the desired interior radius. To gain insights into ion permea...
متن کاملMolecular restraints in the permeation pathway of ion channels.
Ion channels assist and control the diffusion of ions through biological membranes. The conduction process depends on the structural characteristics of these nanopores, among which are the hydrophobicity and the afforded diameter of the conduction pathway. In this contribution, we use full atomistic free-energy molecular dynamics simulations to estimate the effect of such characteristics on the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 101 11 شماره
صفحات -
تاریخ انتشار 2011